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a b s t r a c t 

We study Susceptible-Exposed-Asymptomatic-Infectious-Recovered (SEAIR) epidemic spreading model of 

COVID-19. It captures two important characteristics of the infectiousness of COVID-19: delayed start and 

its appearance before onset of symptoms, or even with total absence of them. The model is theoretically 

analyzed in continuous-time compartmental version and discrete-time version on random regular graphs 

and complex networks. We show analytically that there are relationships between the epidemic thresh- 

olds and the equations for the susceptible populations at the endemic equilibrium in all three versions, 

which hold when the epidemic is weak. We provide theoretical arguments that eigenvector centrality of 

a node approximately determines its risk to become infected. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Understanding epidemic spreading of contagious diseases and 

ffectiveness of various countermeasures is of high interest for the 

ublic health and the society in general, with important contri- 

utions provided by epidemiologists, mathematicians and physi- 

ists as well. Although earliest theoretical work in the mathemat- 

cal epidemiology dates back to Daniel Bernoulli [1] , the devel- 

pment of the modern approach started in the beginning of the 

ast century [2–4] . In the last two decades, since the emergence of 

he complex networks theory, epidemic modeling has gained novel 

nsights. By modeling the contacts between the individuals with 

omplex networks, some associations were found between the epi- 

emic threshold and the network properties like the degree distri- 

ution or the leading eigenvalue of the adjacency matrix [5–10] . 

oreover, the epidemic spreading has grown as a concept that ex- 

ends its original design for modeling diffusion of infectious dis- 

ases to sharing ideas, rumors, or computer viruses [9] . 

In the classical approach, the individuals are conveniently 

rouped in compartments or classes. The mathematical models 

or epidemic spreading in this setting are systems of differential 

quations for the evolution of the size of those compartments. 
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n such models, there is an assumption of homogeneous mixing, 

hich means that the pathogen can spread between each pair 

f individuals with equal probability. In a more realistic model- 

ng each individual is considered as node in certain network of 

ontacts, where infection can spread only among neighbors in 

hat network. This is particularly relevant, because real world net- 

orks besides being random, among others they possess proper- 

ies like small-world phenomenon [11] , or scale-free distribution 

f the node degrees [12] . One approach for studying the disease 

preading on networks is the heterogeneous mean-field [6,13] in 

hich all nodes with the same degree are assumed to be statisti- 

ally equivalent. The quenched mean-field technique is applied in 

ven more realistic scenario, where each node is treated separately 

14,15] . Among major contributions in the field of epidemic spread- 

ng on networks one should mention the studies of disease local- 

zation [16,17] , spreading on multilayer networks [17,18] , the as- 

umption of non-exponential distribution of periods between con- 

ecutive events [19,20] and the effects of the delay in the recovery 

21] and in the infection [22] . 

Various infections are characterized with different stages in the 

ourse of development of the disease in the host, starting from 

ontracting the pathogen to the healing. Depending on the disease 

nder study, several compartments, or classes are defined in or- 

er to differentiate between the stages. The most frequently used 

ompartments are the Susceptible (S), Exposed (E), Infectious (I) 

https://doi.org/10.1016/j.chaos.2020.110394
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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nd Recovered (R) [9,23] . The meaning of the compartmental sym- 

ols usually is: S – healthy individuals subjected to infection, E –

nfected which do not transmit the disease yet, I – infected and 

nfectious and R – cured which cannot become infected again. The 

ost popular models are the SIS and SIR, which are sufficiently 

imple to provide mathematical tractability, and powerful enough 

o capture the features of epidemics of many contagious diseases 

23] . 

In this theoretical work we consider the known Susceptible- 

xposed-Infected-Recovered (SEIR) model augmented with another 

tate, the asymptomatic state (A), which precedes the infectious. 

he chosen SEAIR model has a built-in delay which means that the 

nfected person do not start to spread the disease immediately, al- 

ows to address the different contagiousness of the disease in dif- 

erent phases and captures the presence of undetected spreaders. 

lso, it is simple enough to allow for theoretical study of differ- 

nt properties. We study the SEAIR model with two approaches: 

he classical, which uses differential equations, and the one based 

n statistical physics framework, in which is considered discrete- 

ime epidemic model on complex networks. We study the latter 

odel on random regular graphs and on complex networks sep- 

rately. For the three versions we obtain the epidemic threshold, 

quation for the fraction of susceptible individuals at the end of 

pidemic and we study the linear stability of the disease-free and 

ndemic equilibria. The results for the random regular graphs hold 

hen the contagiousness is weak, while for the complex networks 

t is also needed that epidemic is small-scale one in a sense that it 

an affect a tiny fraction of the population. We furthermore study 

he roles of the leading eigenvalue and the principal eigenvector of 

he adjacency matrix in the spreading. It is already known that the 

eading eigenvalue determines the epidemic threshold [14,24] . We 

how that the principal eigenvector and its associated eigenvector 

entrality have important role in estimation of the risk of infection. 

e finally note that, the techniques which are applied for analysis 

f the Jacobian matrix at the equilibria might be relevant in studies 

f linear stability of coupled multidimensional dynamical systems. 

The paper is organized as follows. First, in Section 2 we present 

ome of the relevant literature about epidemic spreading mod- 

ls of COVID-19 and their relation to the proposed model. Then, 

n Section 3 we introduce and analyze the SEAIR compartmental 

odel. In the following Section 4 is studied the discrete-time ver- 

ion on random regular graphs and complex networks, while in 

ection 5 we present some results of the numerical experiments. 

he paper ends with the Conclusion. 

. Epidemic spreading models of COVID-19 and their relation 

o the SEAIR model 

The ongoing COVID-19 is the largest pandemic in modern his- 

ory. The understanding of the virus and its influence on the in- 

ected individuals are still in progress. However, it was established 

hat a key feature is the possibility that an infected person can 

pread the disease before onset of symptoms or without having 

hem at all [25,26] . Another important observation is that the me- 

ian incubation period of the disease is approximately five days 

27] . Thus, the asymptomatic spreaders and individuals in the in- 

ubation period are hidden disease carriers. Their presence poses 

 challenge in the control of the epidemic, in the planning of 

ealthcare capacity buildup or the relaxation of lockdown mea- 

ures, and even for estimation of the population affected by the 

athogen. The mathematical models of the epidemic spreading are 

dapted accordingly to capture the key features of the spreading 

f the COVID-19, for which the most basic and popular ones, SIS 

nd SIR are not satisfactory. The existence of incubation period is 

ddressed by including compartment of exposed individuals (E), 

hich in certain studies in the literature is denoted as latent. The 
2 
bsence or presence of symptoms is addressed in different ways 

n the literature. In one approach [28] , it is considered presence 

f presymptomatic, or prodromic phase, where the individual is 

lready infectious, which is followed by either asymptomatic or 

ymptomatic phase which can have three different severity levels. 

n another study [29] , there are separate latent compartments for 

he asymptomatic and symptomatic individuals, and it is consid- 

red different contagiousness by the infected individuals depend- 

ng on the presence or absence of symptoms. The observation of 

xistence of super spreaders of the disease was also included in a 

athematical model [30] . In the analysis performed in [31] , the in- 

ected persons which are detected, either asymptomatic or symp- 

omatic, are accounted in separate class from those that are not. 

ince the quarantine is one of the key defence measures against 

he spreading, the quarantined compartment was considered as 

ell in many works [32–35] . Also, to account for the disease out- 

omes and the burden on the healthcare capacities were intro- 

uced compartments for the hospitalized, for those under intensive 

are, and for those which did not survive the disease [28,29,34,35] . 

From one side, the simpler models are easier to study and in 

eneral provide better estimation of the model parameters which 

re needed for making predictions for future development of an 

pidemic. From another side, the more complex models obviously 

llow for better description of certain features of particular epi- 

emic like the COVID-19. Thus, one has to make a choice about 

hat kind of model to apply in order to obtain particular in- 

ight. In this work, the aim is to work with a model that will 

ddress the key features of COVID-19 epidemic, the latency and 

he existence of asymptomatic transmission, and study it in frames 

f complex networks theory which accounts for nontrivial pat- 

ern of contacts between the individuals. Accordingly, we sepa- 

ate the disease transmitters in two compartments. In the asymp- 

omatic one is included an individual which do not have symptoms 

t the moment of transmission of the virus, regardless whether 

e or she will obtain them later or not. In the infectious com- 

artment are accounted the persons which can infect the others 

nd have symptoms already. Thus, in the asymptomatic and infec- 

ious compartments are included the three kinds of disease spread- 

rs: always asymptomatic, currently asymptomatic which will de- 

elop symptoms later and symptomatic. More detailed description 

f the SEAIR model are given in the following two sections. We fi- 

ally note that the proposed model can be considered as similar 

o that in [36] , where the individuals which are not detected as 

arriers of the virus are considered as unreported to the authori- 

ies and can transmit the disease, while the reported, or detected 

nes, do not contribute to the spreading. Another model closely 

elated to SEAIR is that in [37] , because it also has incorporated 

re-symptomatic transmission and two different compartments for 

he asymptomatic and symptomatic individuals. 

. SEAIR compartmental model 

Let the variables S,E,A,I and R denote the fraction of individu- 

ls which are respectively susceptible, exposed, asymptomatic, in- 

ectious and recovered. We assume that the exposed state corre- 

ponds to the incubation period when a host has the pathogen, 

ut he or she cannot infect the others. In the asymptomatic state 

he individual spreads the disease, possibly with higher virulence 

ithout being aware about having the virus. The person can even 

ecover without ever noticing that he, or she had the disease. Cer- 

ain percentage of carriers of the virus will show symptoms and 

e classify them as infectious. Let the infecting rate of the asymp- 

omatic persons be α, while of infectious ones be β . The rate at 

hich exposed individuals become asymptomatic is γ . The growth 

f the fraction of infectious hosts, which have symptoms is de- 

ermined with rate σ . For simplicity, we assume that healing of 
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oth the asymptomatic and infectious persons is modeled with the 

ame rate μ. We emphasize that μ does not exactly correspond to 

he time of complete healing, but the period in which a person 

an infect the others. With these assumptions one has the follow- 

ng SEAIR compartmental model 

˙ S = −αAS − βIS, 

˙ 
 = αAS + βIS − γ E, 

˙ 
 = γ E − σA − μA, 

˙ I = σA − μI, 

˙ 
 = μA + μI. (1) 

e have neglected the births and deaths in the population and 

ne can easily verify that the total number of persons in all states 

s constant, S(t) + E(t) + A (t) + I(t) + R (t) = 1 . 

One trivial solution of the system (1) is the disease-free state 

 = 1 , when the pathogen is absent. If some virus is introduced, an

pidemic can occur. Then there is an endemic equilibrium which 

orresponds to the situation when the fraction of susceptibles is 

ot sufficient for further spread of the disease. When epidemic oc- 

urs, the number of unaffected people can be obtained by standard 

echnique which will be applied here [38] . For the SEAIR model, if 

e sum the top four equations in (1) , the following relationship 

ill hold 

d(S + E + A + I) 

dt 
= −μ(A + I) . (2) 

n situations when the epidemic starts with negligibly small num- 

er of virus bearers, by taking that at the finish of the epidemic 

he fractions of individuals with the pathogen is zero, after inte- 

ration of the last equation, one obtains 

(0) − S(∞ ) = μ

∫ ∞ 

0 
[ A (t) + I(t) ] dt. (3) 

The first equation in (1) can be rewritten as 

dS 

S 
= −(αA + βI) dt, (4) 

hich by integration will result in another relationship between 

he initial and the final fractions of susceptibles 

n 

S(0) 

S(∞ ) 
= α

∫ ∞ 

0 

A (t) dt + β

∫ ∞ 

0 

I(t) dt. (5) 

One can also integrate the fourth equation in (1) on both sides 

o obtain 

 ∞ 

− I 0 = σ

∫ ∞ 

0 

A (t) dt − μ

∫ ∞ 

0 

I(t) dt ≈ 0 . (6) 

he last result provides a relationship between asymptomatic and 

nfectious fractions in the course of the whole epidemic ∫ ∞ 

0 

A (t) dt = μ

∫ ∞ 

0 

I(t) dt. (7) 

y combining the relationships (3), (5) and (7) , the following equa- 

ion for the fraction of unaffected individuals is obtained 

(0) − S(∞ ) = 

μ(μ + σ ) 

αμ + βσ
[ ln S(0) − ln S(∞ ) ] . (8) 

sing the fact that f (x ) = ln x is steeper than g(x ) = x for x < 1 ,

ne can verify that 

(0) − S(∞ ) < ln S(0) − ln S(∞ ) . (9) 

his implies that the transcendental Eq. (8) has a solution only if 

(μ + σ ) < αμ + βσ. (10) 

he last inequality is the condition of existence of endemic equi- 

ibrium S = S(∞ ) ; E = A = I = 0 ; R = S(0) − S(∞ ) of the system (1) .
3 
To study the linear stability of the equilibrium states, one 

hould linearize the system (1) . The respective Jacobian matrix 

 = [ ∂ ˙ B /∂C] ; B, C ∈ { S, E, A, I, R } , reads 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−αA − βI 0 −αS −βS 0 

αA + βI −γ αS βS 0 

0 γ −σ − μ 0 0 

0 0 σ −μ 0 

0 0 μ μ 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (11) 

t the disease-free state for which S = 1 and E = A = I = R = 0 , the

acobian has rather simple form 

 DF = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 −α −β 0 

0 −γ α β 0 

0 γ −σ − μ 0 0 

0 0 σ −μ 0 

0 0 μ μ 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (12) 

ecause the first and last columns are zero, this Jacobian has two 

rivial zero eigenvalues, while the other three are the roots of the 

olynomial 

 (λ) = (−μ − λ) [ (−γ − λ)(−σ − μ − λ) − αγ ] + βγ σ. (13) 

e show in Appendix A that the three nontrivial eigenvalues of 

he Jacobian have negative real part, which implies linear stability 

f the disease-free state, if the following relationship holds 

(μ + σ ) > αμ + βσ. (14) 

he obtained inequality is opposite of the condition for the ex- 

stence of endemic equilibrium, as one can expect. If (14) holds, 

10) does not, the disease-free state is stable and epidemic will 

ot occur. In the opposite, if (14) is not satisfied, the equilibrium 

1 , 0 , 0 , 0 , 0) is unstable, the epidemic will ensue, and the size of

naffected population can be obtained from (8) . Thus the threshold 

t which epidemic can emerge is the following relationship 

(μ + σ ) = αμ + βσ. (15) 

The linear stability analysis of the endemic equilibrium can 

e applied by the same procedure as for the disease-free one. 

n this case, in the Jacobian (11) one should take S = S(∞ ) and

 = A = I = 0 . By applying the same procedure which is explained

n Appendix A , it will be obtained that the only difference from 

he disease-free case is that instead of α and β, it should be used 

(∞ ) α and S(∞ ) β, respectively. This would simply change the 

ondition for stability of the endemic equilibrium to 

(μ + σ ) > S(∞ )(αμ + βσ ) . (16) 

rom (8) one has the following relationship for the fraction con- 

aining the parameters 

μ(μ + σ ) 

αμ + βσ
= 

S(0) − S(∞ ) 

ln S(0) − ln S(∞ ) 
. (17) 

lugging the last relationship in (16) , it will be obtained that the 

ndemic equilibrium is stable once the following holds 

S(0) − S(∞ ) 

ln S(0) − ln S(∞ ) 
> S(∞ ) . (18) 

he last inequality can be rearranged as 

S(0) 

S(∞ ) 
> 1 + ln 

S(0) 

S(∞ ) 
, (19) 

hich holds always since S(0) > S(∞ ) . 
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. Discrete-time SEAIR model 

Subsequent investigation of a disease spreading model when 

ne needs to account for the contacts between the individuals, 

s to study epidemic spreading on complex networks framework. 

et us consider discrete-time evolution version of the proposed 

EAIR model with finite population of N individuals. The network 

f contacts is conveniently modeled with fixed undirected graph, 

n which the vertices are the individuals, while the links exist be- 

ween those persons which have contact to each other. This means 

hat the disease can be transmitted only between neighbors in the 

raph. An exact approach for analysis of contact-based spreading 

n complex networks is based on using indicator random variable 

or each state of every node in the network and working with a 

ystem of size 5 N . However, as it is elaborated in details in [39] ,

nder the assumption that a node can be in certain state inde- 

endently of the states of the other nodes, one can instead use 

he probability of being at that state as a more convenient vari- 

ble of interest. We proceed in that spirit and build our model on 

he set of probabilities for each node being in certain state, S, E, 

, I, or R, at given moment n . We will also denote the parameters

ith the same Greek letters as in the compartmental model. They 

orrespond to the same transitions and have meaning of proba- 

ilities instead of rates. To be more precise, α is the probability 

hat asymptomatic person will infect a susceptible neighbor at one 

ime step, while β is the respective probability in the case of con- 

act between infectious and susceptible individual. Once becoming 

xposed, the person can proceed into asymptomatic phase with 

robability γ at one time step, or remain in the same state with 

robability 1 − γ . The respective probability to show symptoms 

y asymptomatic individual is σ . Again, as in the compartmental 

odel, we assume identical probability μ to become recovered, for 

oth the asymptomatic and the infectious state. 

The dynamics of the discrete-time version of the SEAIR model 

s built similarly to the model considered in [14] . Denote the prob- 

bilities that the individual i at the discrete moment n is in respec- 

ive state with p S,i (n ) ,p E,i (n ) ,p A,i (n ) ,p I,i (n ) and p R,i (n ) . Our model

ssumes reactive process of epidemic spreading, which means that 

n each time step every individual has contact with every neighbor 

40] . Then, certain susceptible person i at the moment n + 1 will

ot receive the infection from any of its neighbors with probability 

14,40] 

 i (n ) = 

∏ 

j∈N i 

[
1 − αp A, j (n ) − βp I, j (n ) 

]
, (20) 

here N i denotes the set of neighbors of i . The individual will re-

ain susceptible at the moment n + 1 , if he, or she, did not receive

he contagion, which means that 

p S,i (n + 1) = p S,i (n ) P i (n ) . (21) 

therwise, an individual can become exposed if he, or she has 

een susceptible before and received the contagion, or continue to 

e exposed at the next moment, if the incubation has not finished, 

ith probability 

p E,i (n + 1) = p S,i (n ) [ 1 − P i (n ) ] + (1 − γ ) p E,i (n ) . (22)

he probability of being asymptomatic at the next moment is 

p A,i (n + 1) = γ p E,i (n ) + (1 − σ − μ) p A,i (n ) , (23)

here the last term accounts for the situation that neither the 

ymptoms will appear, nor healing will happen in one time step, 

hich imposes a restriction μ + σ < 1 . The node i will be in state

 at the moment n + 1 with probability 

p I,i (n + 1) = σ p A,i (n ) + (1 − μ) p I,i (n ) , (24)

here the former term describes the probability to show symp- 

oms, if in the previous moment the node was asymptomatic, 
4 
hile the last one corresponds to recovering. Finally, the proba- 

ility of being recovered at some moment is 

p R,i (n + 1) = p R,i (n ) + μ[ p A,i (n ) + p I,i (n ) ] . (25) 

he set of Eqs. (21) to (25) determines a discrete-time dynamical 

ystem of equations for evolution of probabilities of the states for 

ach node in the network. It can be solved numerically for arbi- 

rary initial condition and one can thus observe the progress of the 

pidemic at each moment. In practice one can make such studies 

ith networks with size depending on the computational capaci- 

ies at hand. 

.1. Epidemic spreading on random regular graphs 

We will pursue our analysis of spreading processes on random 

egular graphs where each node has the same degree k . For in- 

nitely large random regular graphs, the probabilities of the states 

re equal for all nodes and one can drop the index of the node. 

he probability to avoid infection (20) will be simplified to 

(n ) = [ 1 − αp A (n ) − βp I (n ) ] 
k 
. (26) 

hen the system of equations for discrete-time epidemic spreading 

n random regular graph reads 

p S (n + 1) = p S (n ) [ 1 − αp A (n ) − βp I (n ) ] 
k 
, 

p E (n + 1) = p S (n ) 
{ 

1 − [ 1 − αp A (n ) − βp I (n ) ] 
k 
} 

+ (1 − γ ) p E (n ) , 

p A (n + 1) = γ p E (n ) + (1 − σ − μ) p A (n ) , 

p I (n + 1) = σ p A (n ) + (1 − μ) p I (n ) , 

p R (n + 1) = p R (n ) + μ[ p A (n ) + p I (n ) ] . (27) 

Here we have also two equilibrium points: one where all in- 

ividuals are susceptible p = (1 , 0 , 0 , 0 , 0) and the other when the

raction of susceptible individuals is such that it prevents further 

pread of the disease p = (p ∗
S 
, 0 , 0 , 0 , 1 − p ∗

S 
) . In the Appendix B we

how how application of similar reasoning as for the compartmen- 

al model can allow to find a closed form equation for the number 

f susceptible individuals at the end of the epidemic. It can be ap- 

lied when the contagion probabilities α and β are very small. As 

t is shown in the Appendix B , the equation for determination of 

he probability of the susceptible state at the end of epidemic is 

ery similar to the respective one for the compartmental case 

p S (0) − p S (∞ ) = 

μ(μ + σ ) 

k (αμ + βσ ) 
ln 

p S (0) 

p S (∞ ) 
. (28) 

he last result extends the one for all-to-all coupling considered in 

ompartmental models, where effectively each individual can get 

he disease from anyone in the population. Here, it is obtained that 

ppropriately modified relationship holds for restricted number of 

ontacts. By repeating the same analysis as for the compartmen- 

al model, one can also obtain that the condition for existence of 

ndemic equilibrium is 

(μ + σ ) < k (αμ + βσ ) . (29) 

ne can note that the last relationship is similar to the respective 

ne for the compartmental model (10) , and the only difference is 

he presence of the node degree k in the discrete-time case. 

We can further make linear stability analysis of equilibria by 

inearizing the evolution equations. The respective Jacobian matrix 
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t the fixed points for which p E = p A = p I = 0 and p S = p ∗S is 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 −kαp ∗S −kβp ∗S 0 

0 1 − γ kαp ∗S kβp ∗S 0 

0 γ 1 − σ − μ 0 0 

0 0 σ 1 − μ 0 

0 0 μ μ 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (30) 

olving the characteristic equation Q (λ) = det (J − λI ) = 0 of the 

acobian (30) , for p ∗
S 

= 1 will result in two trivial eigenvalues equal

o one and other three. We note that in the discrete-time case the 

rivial eigenvalues have value equal to one that also corresponds 

o the marginal stability, which are zero in the continuous-time 

cenario. The nontrivial eigenvalues λ are the roots of the polyno- 

ial 

(λ) = (1 − μ − λ) [ (1 − γ − λ)(1 − σ − μ − λ) − αγ k ] 

+ βγ σ k. (31) 

ne can notice the similarity to the respective characteristic poly- 

omial for the compartmental case (13) . The only difference is 

resence of the degree k which in the latter expression multiplies 

and β and one has 1 − λ in the discrete-time case instead of −λ. 

n the Appendix C it is shown that the disease-free state is stable 

nce the following relationship is satisfied 

(μ + σ ) > k (αμ + βσ ) , (32) 

hich is similar to the one for the compartmental case. Again, the 

nly difference is the presence of the node degree k . 

The linear stability of the endemic equilibrium is established 

rom the leading eigenvalue of the same Jacobian matrix (30) as 

he disease-free one, but using p ∗
S 

= p S (∞ ) obtained from (28) . The

rocedure is nearly the same as for the disease-free equilibrium 

nd the only difference is that instead of k one should use kp S (∞ )

n all analysis. Then the endemic equilibrium will be stable, if the 

ondition similar to (32) is satisfied 

(μ + σ ) > kp S (∞ )(αμ + βσ ) . (33) 

ithout showing the details, we will just mention that once the 

ndemic equilibrium in this discrete-time disease spreading model 

xists, it is linearly stable. 

.2. Epidemic spreading on complex networks 

Let us now consider the general case when the contacts be- 

ween individuals are described with complex network. In stud- 

es of interacting units coupled in a network it is typical to de- 

ne the state of the whole system by stacking the state vectors 

f each node one on top of another. In this case another ordering 

s more appropriate [24] . First, create vector of the probabilities of 

usceptible states of all nodes p S = [ p S, 1 , p S, 2 , . . . , p S,N ] 
T , then those

f the exposed states p E = [ p E, 1 , p E, 2 , . . . , p E,N ] 
T , and likewise for

he remaining three p A , p I and p R . Also, denote with A the adja- 

ency matrix of the network of contacts between the individuals 

ith elements A i, j = 1 only if nodes i and j are neighbors and 

 i, j = 0 otherwise. Under general circumstances, determination of 

he probabilities at the end of epidemic in case it happens, is very 

omplicated, if not impossible. However, when the contagiousness 

s weak, which means that α � 1 and β � 1 , one can obtain sim- 

lar expressions which relate initial and final probabilities of sus- 

eptible state as for the former two models. As it is explained in 

etails in the Appendix D , when α � 1 and β � 1 , the suscepti- 

ility probability vector can be calculated from the following self- 

onsistent system 

p S (0) − p S (∞ ) = μ(1 + 

σ

μ
) 

∞ ∑ 

n =0 

p A (n ) , 
5 
n p S (0) − ln p S (∞ ) = 

(
α + β

σ

μ

)
A 

∞ ∑ 

n =0 

p A (n ) . (34) 

he solution of the system of transcendental Eq. (34) consists of 

he susceptibility vector at the endemic equilibrium p S (∞ ) and the 

ector of sums of probabilities of asymptomatic states 

 A = 

∞ ∑ 

n =0 

p A (n ) . (35) 

uch transcendental system should be solved numerically, and for 

arge networks might be impossible task. However, one can at least 

btain how the solution will look like, when the epidemic is weak 

n a sense that only small fraction of the population is infected 

uring its course. In such case the probability of susceptibility will 

ot change significantly p S (0) ≈ p S (∞ ) . This situation might be 

resent, for example, when the contagiousness of the pathogens 

s slightly over the threshold. Then one can keep only the leading 

erms in the expansion of the logarithm and obtain 

n p S,i (0) − ln p S,i (∞ ) ≈ p S,i (0) − p S,i (∞ ) . (36) 

he last approximation means that effectively the left hand sides 

f relationships (34) are equal. Then, after some algebra, by using 

35) , from those relationships one can obtain 

 A = 

αμ + βσ

μ(μ + σ ) 
Ap A . (37) 

he last relationship is eigenvalue equation of a matrix which is 

he adjacency matrix multiplied by the scalar (αμ + βσ ) / [ μ(μ + 

)] , which corresponds to eigenvalue equal to one. Thus, the vec- 

or of sums of the probabilities of the asymptomatic state (35) rep- 

esents eigenvector of the adjacency matrix that corresponds to the 

igenvalue � such that 

 = �
αμ + βσ

μ(μ + σ ) 
. (38) 

o determine which is the eigenvalue �, observe that we can ap- 

ly similar inequality as (9) , which means that for each node i one 

as 

p S,i (0) − p S,i (∞ ) < ln p S,i (0) − ln p S,i (∞ ) . (39) 

his implies that one has the following vector inequality 

 A < 

αμ + βσ

μ(μ + σ ) 
Ap A , (40) 

hich is obtained from (34) with simple algebra. When the epi- 

emic parameters are such that 

max 
αμ + βσ

μ(μ + σ ) 
< 1 , (41) 

here �max is the largest eigenvalue of A , then (38) can not 

e satisfied for no one eigenvalue. That is the condition when 

ndemic equilibrium does not exist. To determine when it will 

merge, one should increase the value of the fraction in (41) , by 

odifying the epidemic parameters. Then, the first eigenvalue that 

an satisfy the equation as (38) will be exactly the largest eigen- 

alue �max . Thus the condition for existence of endemic equilib- 

ium is 

(μ + σ ) < �max (αμ + βσ ) . (42) 

he last result is generalization of the case of random regular 

raph for which �max = k . 

Because the leading eigenvalue of the adjacency matrix A de- 

ermines the equation for p A , that vector is determined from the 

espective eigenvector, or the principal eigenvector of A . However, 

he eigenvalue Eq. (37) just determines the relative magnitudes of 

he components of p . If it is used in the system (34) , it will be
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btained that for each node the change in the probability of being 

usceptible is the same, which counters the fact that it corresponds 

o the respective component of the principal eigenvector. We fur- 

her note that from (34) the relative magnitudes of the changes of 

he probabilities of susceptible state p S,i (0) − p S,i (∞ ) , and the re-

ulting probabilities of recovered state p R,i (∞ ) , as collinear to p A ,

re also proportional to the principal eigenvector of the adjacency 

atrix. This is in accordance to the reasoning that the individuals 

ith highest risk of infection are those with many contacts, and 

articularly those which have many high-degree neighbors. Thus 

he eigenvector centrality of the node [41] , which is the respec- 

ive component in the principal eigenvector, determines the risk of 

nfection of that node. We note that, by applying this procedure 

ne can also show that the same conclusions about the role of the 

eading eigenvalue and principal eigenvector in epidemic spread- 

ng on complex networks hold for the simpler SEIR, SIR and SIS 

odels. 

It should be emphasized that, there are works in the literature 

hich point that the principal eigenvector of the adjacency matrix 

an have important role in disease spreading. The probability of 

nfectious state of a node in SIS spreading model on complex net- 

orks was found to be proportional to the eigenvector centrality, 

n vicinity of the epidemic threshold [16] , similarly as the analysis 

bove claims. This finding was further extended to multilayer net- 

orks [17] . It was reported in the same contributions, that if the 

tructure of the network is such that the principal eigenvector is 

ocalized, the spreading will be limited to small number of nodes, 

ven for large networks. Thus, the association between the eigen- 

ector centrality and probability of becoming infected might not 

e observed in certain scenarios. Such example could be observed, 

or example, in structured network with communities, when the 

irus starts spreading in a node in one community, while prin- 

ipal eigenvector has significantly large components in the other 

ommunities. Thus, more research on this issue is needed for bet- 

er understanding of the conditions when the principal eigenvec- 

or is really useful in estimation of the risk of infection. Finally, 

t is worth noting that it was found that the principal eigenvector 

f another matrix – the submatrix corresponding to the infectious 

tates – also determines the disease spreading pathways. This ob- 

ervation has appeared in the studies of disease spreading between 

patial regions in a waterborne disease [42] and COVID-19 [34] . 

We now proceed with the study of the stability of the disease- 

ree equilibrium and determine the epidemic threshold. The asso- 

iated Jacobian matrix is obtained by taking the respective deriva- 

ives in the Eqs. (21) to (25) . Also, we remind that after making dif-

erentiation, at the epidemic inception, in the Jacobian it should be 

aken p E,i = 0 ,p A,i = 0 ,p I,i = 0 and p S,i = 1 . It can be verified that

he Jacobian will have the following matrix form 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

I 0 −αA −βA 0 

0 (1 − γ ) I αA βA 0 

0 γ I (1 − σ − μ) I 0 0 

0 0 σ I (1 − μ) I 0 

0 0 μI μI I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (43) 

here I is identity matrix of the same size N as the adjacency ma- 

rix of the network A – the number of nodes in the network. One 

an note the similarity in the structure between the last matrix 

nd that in (30) . The eigenvalues of the last Jacobian are obtained 

rom the characteristic equation T (λ) = det (J − λI 5 N ) = 0 , where

e emphasize that the involved identity matrix has size 5 N × 5 N. 

ne could use the approach given in [24] to determine the depen- 

ence of the epidemic threshold on the largest eigenvalue of the 

djacency matrix. We have chosen alternative approach here, based 
6 
n Schur’s determinant identity 

et 

[
Q R 

S T 

]
= det (T ) · det (Q − RT 

−1 S ) , (44) 

hich is more general. Clearly, when a matrix has many zero sub- 

atrices, its application provides simpler results. By repetitive use 

f it, which is elaborated in the Appendix E , it can be shown that

he nontrivial eigenvalues can be obtained from the polynomial 

orresponding to the following determinant 

(λ) = det 

[
(1 −γ −λ)(1 −σ −μ−λ)(1 −μ−λ) 

γ [ α(1 − μ − λ) − βσ ] 
I − A 

]
. (45) 

e note that the same determinant can be obtained by the proce- 

ure given in the Appendix G which even delivers the eigenvectors 

f the Jacobian. Currently, we cannot state whether the approach 

n Appendix E is just an alternative, or it might have potential to 

rovide results when the latter is not useful. To continue with the 

nalysis, one can substitute the multiplier of the identity matrix in 

he last equation as 

= 

(1 − γ − λ)(1 − σ − μ − λ)(1 − μ − λ) 

γ [ α(1 − μ − λ) − βσ ] 
, (46) 

nd will obtain the characteristic function for determination of the 

igenvalues of the adjacency matrix, det (�I − A ) . From the rela- 

ionship (46) it can be seen that to each eigenvalue of the adja- 

ency matrix � correspond three eigenvalues of the Jacobian λ, 

hich are obtained from the polynomial 

 �(λ) = (1 − μ − λ) [ (1 − γ − λ)(1 − σ − μ − λ) − αγ�] 

+ βγ σ�. (47) 

he last relationship will be identical to the respective one for the 

andom regular graph (31) , if one substitutes � with k . Because 

ll eigenvalues � of the adjacency matrix are real [43] , the coeffi- 

ients in the last polynomial in λ are also real for each �. Instead 

f checking whether the roots of the last polynomial are within 

he unit circle, one can determine the eigenvalues of the related 

olynomial that corresponds to the Jacobian of the compartmen- 

al model (13) , and then use the relationship between the roots of 

he characteristic polynomials of the compartmental and discrete- 

ime models (C.5) . The disease-free state of the model on com- 

lex network is unstable, if there is at least one eigenvalue � of 

he adjacency matrix, for which there is a real positive root of the 

olynomial (47) in which one should use −λ instead of 1 − λ. This 

ituation happens when parameters are such that the following in- 

quality holds 

(μ + σ ) < �(αμ + βσ ) . (48) 

n determination of the epidemic threshold in SIS and SIR mod- 

ls, usually the fraction between the contagiousness and recovery 

arameters is varied. Since the last inequality is a bit more com- 

lex than those in the SIS and SIR models, for the SEAIR model 

ne can use the parameters α and β as bifurcation parameters. 

hen from the last inequality the smallest α and β for which the 

isease-free state is unstable are those obtained for the largest 

, that is the leading eigenvalue of the adjacency matrix �max . 

hus, the same condition (42) implies existence of endemic equi- 

ibrium and instability of the disease-free state. If the opposite is 

rue, 

(μ + σ ) > �max (αμ + βσ ) , (49) 

hen the disease-free state will be stable. The last inequality can be 

een as generalization of the respective one for the random regular 

raphs (32) . 



L. Basnarkov Chaos, Solitons and Fractals 142 (2021) 110394 

e

o

w

m

f

s

(

f  

l

t

	  

t

a

N

t

�
l

p

d

μ

I

α
i

t

a

w  

b  

r

F
w

p

C

s

n  

s

δ  

T

t

F

w

c

δ

T

m

δ

s

t

δ

δ

T

t

δ

I

a

t

δ

w

t

t

c

t

t

T

e

n

l

f

l

n

5

d

T

a

t

p

f

u

a

t

t

d

m

w

m

H

o

e

e

β
e

a

g

γ
c

c

e

k

Let us proceed with determination of the linear stability of the 

ndemic state. To determine the respective Jacobian matrix, first 

bserve the following derivatives 

∂ p S,i 
∂ p A, j 

= −αp S,i A i, j , 
∂ p S,i 
∂ p I, j 

= −βp S,i A i, j , 

∂ p E,i 

∂ p A, j 

= αp S,i A i, j , 
∂ p E,i 

∂ p I, j 

= βp S,i A i, j , (50) 

here A i, j is the i, j th element of the adjacency matrix. The re- 

aining partial derivatives in the Jacobian matrix are the same as 

or the disease-free state and are conveniently captured in the re- 

pective submatrices in (43) . The form of the partial derivatives 

50) is such that for each p S,i they have identical form and likewise 

or the p E,i . To write a more compact form for expressing such re-

ationship, one can introduce a diagonal matrix � which contains 

he endemic equilibrium probabilities p S,i (∞ ) along the diagonal 

i,i = p S,i (∞ ) . Then, one can obtain that the partial derivatives be-

ween the susceptibility and exposed vectors with respect to the 

symptomatic and infectious vectors can be compactly written as 

∂p S 

∂p A 

= −α�A , 
∂p S 

∂p I 

= −β�A , 

∂p E 

∂p A 

= α�A , 
∂p E 

∂p I 

= β�A . (51) 

ow, the Jacobian of the endemic equilibrium differs from that for 

he disease-free one, only in that it contains the matrix product 

A instead of A . Respectively, the stability of the endemic equi- 

ibrium will depend on the leading eigenvalue L max of the matrix 

roduct �A . Thus, the stability condition is similar to that for the 

isease-free state (49) 

(μ + σ ) > L max (αμ + βσ ) . (52) 

n the Appendix F it is shown that in case of small contagiousness 

� 1 and β � 1 and when epidemic affects small population dur- 

ng its course, the endemic equilibrium is linearly stable. 

Let us finally examine the behavior of the disease spreading in 

he early phase of epidemic. The one-step evolution of the prob- 

bilities of different states in disease spreading on complex net- 

orks is given by Eqs. (21) to (25) . One can combine all proba-

ilities in single column vector as p = [ p 

T 
S , p 

T 
E , p 

T 
A 
, p 

T 
I , p 

T 
R ] 

T and the

ight hand sides of the probability evolution equations in a vector 

. Then, one-step evolution of the probabilities can be compactly 

ritten in vector notation as 

 (n + 1) = F [ p (n ) ] . (53) 

onsider early stages of the epidemics, when the states p (n ) are 

ufficiently close to the disease-free equilibrium p DF = F [ p DF ] . De- 

ote with δp (n ) = p (n ) − p DF the deviation from the disease-free

tate. Then from (53) one has 

p (n + 1) = p (n + 1) − p DF = F [ p (n ) ] − p DF . (54)

he linear approximation of the nonlinear function F in vicinity of 

he disease-free state is 

 [ p (n ) ] ≈ F [ p DF ] + J DF [ p (n ) − p DF ] 

= p DF + J DF δp (n ) , (55) 

here J DF is the Jacobian at the disease-free state. It means that 

onsecutive perturbations satisfy simple relationship 

p (n + 1) ≈ J DF δp (n ) . (56) 

hus, at the early phase of an epidemic, the perturbation at given 

oment n is approximately given as 

p (n ) ≈ J n DF δp (0) . (57) 
7 
Denote with z i the eigenvector of the Jacobian J DF that corre- 

ponds to the eigenvalue λi . Consider situation when the eigenvec- 

ors z i constitute an orthonormal basis, in which the perturbation 

p (0) can be expressed in terms of the Jacobian basis vectors as 

p (0) = 

5 N ∑ 

i =1 

p i z i . (58) 

hen, after n time steps the perturbation will approximately evolve 

o 

p (n ) = J n DF δp (0) = 

5 N ∑ 

i =1 

p i λ
n 
i z i . (59) 

t is clear that as the number of steps n increases, the projection 

long the principal eigenvector will dominate the others. It means 

hat one can use the approximation 

p (n ) ≈ p max λ
n 
max z max , (60) 

here p max is the projection of the initial perturbation along 

he principal eigenvector z max . In the Appendix G it is explained 

hat when the epidemic starts the leading eigenvalue of the Ja- 

obian λmax depends on that of the adjacency matrix �max and 

hat the principal eigenvector of the Jacobian in that case is de- 

ermined with the principal eigenvector of the adjacency matrix. 

hus, the latter determines the evolution of the epidemics at the 

arly stages. We emphasize that this is an approximation since as 

 grows, the Jacobian which is used, represents the nonlinear evo- 

ution less accurately, because the state of the system goes away 

rom the disease-free one. Although being an approximation, the 

ast result provides an estimate of the risk of being infected of the 

odes in a network, by the respective eigenvector centrality. 

. Numerical experiments and discussion 

The focus of numerical experiments in this work is put on vali- 

ation of the theoretical results for the discrete-time SEAIR model. 

he theoretical analysis of the compartmental model was classical 

nd did not bring any significant novelty, which is not known for 

he other compartmental models. Thus, the potential of the com- 

artmental model should be tested on real data, which is left for 

uture study. 

We have made simulations of disease spreading on random reg- 

lar graphs by numerical solution of the evolution Eq. (27) . The 

im of these numerical experiments was to check the validity of 

he epidemic threshold relationships, as well as the equation for 

he fraction of the susceptible individuals at the end of the epi- 

emic (28) . For computational reasons, for this and the other nu- 

erical experiments in this work, we have considered networks 

ith 10 0 0 nodes. All versions of the SEAIR epidemic spreading 

odel considered here, have five parameters α, β, σ, μ and γ . 

owever, theoretical analysis in previous sections has shown that 

nly the first four of them are relevant for determination of the 

pidemic threshold and the susceptible fraction at the end of the 

pidemic. The contagiousness parameters’ values, α = 0 . 0025 and 

= 0 . 002 < α were chosen arbitrarily, by caring to be small to 

nsure that the approximations made in the theoretical analysis 

re justified and using the observation that for COVID-19 conta- 

iousness is bigger before the onset of symptoms. We have taken 

= 0 . 5 which should correspond to two days mean period of in- 

ubation, while the value of σ = 0 . 2 was chosen arbitrarily. The 

ritical parameter μ0 was calculated from the following quadratic 

quation 

 

αμ0 + βσ

μ0 (μ0 + σ ) 
= 1 , (61) 
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Fig. 1. Disease spreading on random regular graph and random graph with con- 

stant degree distribution. The curves represent the dependence of the number of 

susceptible individuals at the end of the epidemic on the parameter μ. The mean- 

ing of the symbols is the following: orange stars – theoretical values from eq. for 

(28) for infinite-size random regular graph with node degree 50; blue diamonds –

random regular graph with the same degree and 10 0 0 nodes; red circles – random 

graph with uniform degree distribution in [30,70] and 10 0 0 nodes. (For interpreta- 

tion of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

w

s

e

p

e

i

a

m

f

F

a

f

t

f

I

g

f

v  

μ
u

a

o

a

d

(

t

o

f

s

v

n

c

a

t

l

e

p

l

(

w

i  

a

c

m  

a

T

f

a

c

e

t

f

�

w

w

d

i

l

c

s

i

p

t

n

t

b

c

m

i

a

s

t

i

μ
n

e

p

b

s

b

a

o

t

n

b

t

c

j

t

fi

p

n  

t

i

a

r

d

p

hich is obtained from the condition for emergence of endemic 

tate for the random regular graphs (29) . The value of the param- 

ter μ was varied in the vicinity of μ0 . All simulations were re- 

eated for ten different networks and for each network ten differ- 

nt initializations were made by putting a randomly chosen node 

n exposed state (patient zero), while leaving the remaining ones 

s susceptible. The pathogen was considered as extinct at the mo- 

ent when the total fraction of exposed, asymptomatic and in- 

ectious individuals is smaller than 10 −8 of the population. In the 

ig. 1 are shown the average number of the susceptible individuals 

t the end of the epidemic. The number of susceptible individuals 

or each particular simulation is simply sum of the probabilities of 

he susceptible state over all nodes. The averaging was performed 

or all networks from the same type and for all initial conditions. 

n the blue diamonds are given the results for the random regular 

raph with node degree k = 50 , while with red circles are those 

or random graph with constant degree distribution in the inter- 

al [30 , 70] . We emphasize that in this figure the threshold value

0 is obtained for the random regular graph and the same value is 

sed for the others. Both considered kinds of graphs have the same 

verage degree, and thus show similar results, particularly when 

ne is far enough from the threshold μ = μ0 . In vicinity of μ0 , 

s was theoretically shown for general complex networks, the epi- 

emic threshold depends on the leading eigenvalue as is given in 

42) , which for the graph with distributed node degree is greater 

han the average degree �max > 〈 k 〉 as the Perron-Frobenius the- 

rem claims [43] . Thus, for the same μ one expects more in- 

ected individuals for the graphs with distributed degree. The re- 

ults from the simulations are further compared with theoretical 

alues obtained from (28) for random regular graph with k = 50 

odes, which holds for network with infinite number of nodes. It 

an be seen a noticeable difference between the theoretical curve 

nd the simulations. One reason for such discrepancy could be at- 

ributed in the fact that the theoretical results hold for infinitely 

arge networks. The other factor is the way of initialization of the 

pidemics, which even in case of stable disease-free state, μ > μ0 , 

roduces a small fraction of potentially infected individuals – at 

east the neighbors of the patient zero. 
8 
Next, we have considered disease spreading on Erd ̋os-Rényi 

ER) [44] and Barabási-Albert (BA) [12] models of complex net- 

orks. Within the ER model, we have considered probability of ex- 

stence of link between each pair of nodes p ER ∈ { 0 . 01 , 0 . 03 , 0 . 05 }
nd generated ten different networks for each case. For the BA 

omplex networks we have taken four different values of the seed 

 ∈ { 5 , 10 , 15 , 20 } . As for the random regular graphs, for each ER

nd BA network ten different initial conditions were considered. 

he parameter values for α,β,γ and σ were taken identical as 

or the random regular graphs. In the Fig. 2 are shown the aver- 

ge number of susceptible individuals and the correlation coeffi- 

ient between the recovered probability vector and the principal 

igenvector of the adjacency matrix at the end of epidemic. Here, 

he threshold value μ0 was calculated for each network separately 

rom the equation 

max 
αμ0 + βσ

μ0 (μ0 + σ ) 
= 1 , (62) 

here �max is the leading eigenvalue of the given network. 

In the Fig. 2 can be seen that as the parameter μ increases to- 

ards the critical value μ0 , the number of susceptible at the en- 

emic equilibrium approaches the total number of individuals, as 

t is expected. We remark that it is not equal to the total popu- 

ation even when the conditions of epidemic are not satisfied, be- 

ause there is certain probability that the patient zero will infect 

ome neighboring nodes. However, this is finite size effect, and in 

nfinitely large network the fraction of infected individuals is ex- 

ected to be infinitesimally small in general. We remind that, in 

he related case, when the epidemic threshold is barely passed, for 

etworks in which the principal eigenvector of the adjacency ma- 

rix is localized, only infinitesimal fraction of the population will 

e affected [16] , although for general networks it will be finite. One 

an also notice that the results about the ER network look that it is 

ore prone to epidemic. This deception appears because the hor- 

zontal axis is in the units of the threshold value μ0 and not the 

bsolute terms. We emphasize that, as it is well known, for infinite 

ize BA networks the respective leading eigenvalue is infinite, and 

hus the threshold value of the contagiousness parameter is van- 

shing [6] . In our analysis of such networks, where the parameter 

is chosen to be varied, its critical value μ0 diverges for infinite 

etworks. 

The rather high value of the correlation coefficient ρ, when dis- 

ase is spreading suggests that indeed the principal eigenvector 

redicts the pattern of infection. When the epidemic is not possi- 

le, μ > μ0 , the correlation does not drop sharply, due to the finite 

ize effects. Near the epidemic threshold there is nonzero proba- 

ility of infecting the neighborhood by the initially exposed node, 

nd particularly those with higher eigenvector centrality. 

We have finally studied the behaviour of the epidemics at the 

nset in order to verify which nodes bear the highest risk of con- 

racting the disease. As common wisdom suggests, highly con- 

ected nodes, and particularly those with well connected neigh- 

ors are most risky ones – just as the eigenvector centrality ranks 

he nodes. For that reason we have calculated the evolution of the 

orrelation coefficient between the principal eigenvector of the ad- 

acency matrix and the probability vector of the recovered state as 

he epidemic unfolds. In the Fig. 3 is shown the correlation coef- 

cient as function of time. For the BA network shown at right the 

arameters have the same values as previously, while for the ER 

etwork (at left panel) α = 0 . 05 and β = 0 . 04 , while γ and σ are

he same as in the other simulations. One can note that generally 

n the early stages of the disease outbreak very high correlation is 

chieved, which confirms that the eigenvector centrality predicts 

ather well the riskiness of contraction of the pathogen. As the epi- 

emics fades out the correlation might drop, because for certain 

arameter combinations majority of population has high chance of 
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Fig. 2. Discrete-time epidemic model on complex networks at the end of epidemic. In all panels ten different complex networks with 10 0 0 nodes are considered. The seed 

of generating the BA networks, m, and the link probability for ER networks p ER is given in the inset. In the top panels are shown the average number of susceptible individuals 

〈 S〉 , while at bottom are average correlation coefficients 〈 ρ〉 between the number of recovered individuals and the principal eigenvector of the respective adjacency matrix. 

The horizontal axis is given in units of the critical value of the parameter μ0 at the epidemic threshold which is calculated for each network separately. 

Fig. 3. Evolution of correlation coefficient between the principal eigenvector of the adjacency matrix and the vector of probability of recovered state in ER (left 

panel) and BA (right panel) complex networks . The considered networks have 10 0 0 nodes. Each curve is obtained by averaging ten networks with the same parameters 

and ten randomly chosen initially infected nodes for each network. 
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ecoming infected and this infection pattern can differ significantly 

rom the predictions by the principal eigenvector of the adjacency 

atrix. However, the lowest curve for the ER network model shows 

hat this is not always happening. In such situation, when epidemic 

s barely possible, only small fraction of population can be affected, 

articularly those which are close to the patient zero. This obser- 
c

9 
ation suggests further investigation of the pattern of risk in case 

f such small outbreaks. 

. Conclusions 

We have studied SEAIR epidemic spreading model aimed to 

apture the contagiousness features of COVID-19. Theoretical anal- 
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sis were made for the compartmental version as well as for 

iscrete-time epidemic spreading on random regular graphs and 

omplex networks. For the compartmental model the epidemic 

hreshold was found and it was shown that it also determines the 

mergence of endemic equilibrium as well. When the contagious- 

ess is weak, we have shown that for random regular graphs and 

omplex networks the epidemic threshold obtained from stability 

nalysis of the disease-free state depends in a similar way on the 

odel parameters. As is known for many other disease spreading 

odels, the epidemic threshold was obtained to depend on the 

eading eigenvalue of the adjacency matrix. We have also demon- 

trated that when endemic equilibrium exists, it is linearly sta- 

le in the three considered models. The theoretical analysis in this 

ork has shown that the risk for infection of certain node is de- 

endent on its eigenvector centrality. In early stages of epidemics, 

he eigenvector centrality points which nodes are most likely to 

e first to contract the disease, while in case of mild epidemic on 

omplex network, it shows which nodes have more risk to contract 

he disease during the whole course of the epidemic. 

The analysis of the linear stability was based on two ap- 

roaches. By appropriately organizing the probabilities of various 

tates as dynamical variables it was obtained the Jacobian matrix 

f the equilibria which has form that allows analytical treatment. 

he first approach was based on applying Schur’s determinant 

dentity which lead to result that the nontrivial eigenvalues of the 

acobian are related to those of the adjacency matrix. In the sec- 

nd approach we have furthermore shown that eigenvectors cor- 

esponding to the nontrivial eigenvalues of the Jacobian are com- 

inations of scaled eigenvectors of the adjacency matrix. We be- 

ieve that these two techniques can be applied in a range of studies 

here multidimensional dynamical systems interact through com- 

lex topology of contacts. 

Although the motivation for studying the SEAIR epidemic 

preading model was the COVID-19 pandemic, we did not make 

ny testing about its relevance on real data. Naturally, it is the first 

tudy which should follow this one. One of the key issues would 

e inference of the fraction of the population which has contracted 

he disease, but has not shown symptoms at all. This could help 

n estimating the likelihood of reappearance of the epidemic and 

ts possible size, once it weakens. Since, in general, contagiousness 

arameters change during epidemic, testing the validity of the re- 

ationships for the fraction of susceptible individuals at the end 

f epidemic might not be easy task. However, at the early phase 

f an epidemic these parameters could be considered as constant. 

hen, by using real data, it could be verified how well the eigen- 

ector centrality anticipates which individuals bear highest risk of 

nfection. If it proves to be useful predictor, then a follow up is 

nvestigation of its relevance to planning of vaccination and other 

rotective measures. 
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ppendix A. Stability condition for the disease-free 

quilibrium in the compartmental model 

As is given in the main text, the eigenvalues of the Jacobian 

t the disease-free state of the compartmental model are obtained 

rom the determinant det (J DF − λI ) , that is ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−λ 0 −α −β 0 

0 −γ − λ α β 0 

0 γ −σ − μ − λ 0 0 

0 0 σ −μ − λ 0 

0 0 μ μ −λ

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= λ2 det 

⎡ 

⎢ ⎣ 

−γ − λ α β

γ −σ − μ − λ 0 

0 σ −μ − λ

⎤ 

⎥ ⎦ 

. (A.1) 

esides the two trivial eigenvalues λ = 0 , the remaining three are 

he roots of the polynomial which is obtained by expanding the 

ast determinant 

 (λ) = (−μ − λ) [ (−γ − λ)(−σ − μ − λ) − αγ ] 

+ βγσ. (A.2) 

he cubic polynomial in λ in the last equation can be written in 

he form 

R (λ) = λ3 + a 2 λ
2 + a 1 λ + a 0 , (A.3) 

here the coefficients are 

 2 = γ + σ + 2 μ, 

 1 = μσ + γ σ + μ2 + 2 γμ − αγ , 

 0 = γ (μ2 + μσ − αμ − βσ ) . (A.4) 

y the Routh-Hurwitz criterion [38] , the roots of the third order 

olynomial of the form (A.3) will have negative real parts if and 

nly if a 2 > 0 and a 2 a 1 > a 0 > 0 . Since a 2 > 0 , the condition a 0 > 0

s equivalent to 

(μ + σ ) > αμ + βσ. (A.5) 

e should also verify that a 2 a 1 > a 0 is satisfied, which after mul- 

iplication of the respective values in (A.4) will result in 

γμσ + γ 2 σ + γμ2 + 2 γ 2 μ − αγ 2 

+ μσ 2 + γ σ 2 + μ2 σ + 2 γμσ − αγσ

+2 μ2 σ + 2 γμσ + 2 μ3 + 4 γμ2 − 2 γαμ

> γμ2 + γμσ − γαμ − γβσ. (A.6) 

y algebraic manipulation and rearrangement of the terms, the last 

nequality becomes 

4 γμσ + γ 2 σ + 4 γμ2 + 2 γ 2 μ

−αγ 2 + μσ 2 + γ σ 2 + 3 μ2 σ

−αγσ + 2 μ3 − γαμ + γ βσ > 0 . (A.7) 

ow, from the condition (A.5) one has the inequality 

+ σ > α, (A.8) 

hich implies the following relationships for the terms with minus 

ign before them in (A.7) 

γ 2 (μ + σ ) > γ 2 α, 

σ (μ + σ ) > γ σα, 

μ(μ + σ ) > γμα. (A.9) 

y using the last three inequalities in (A.7) , one will obtain that 

nly positive terms will remain at the left hand side, which means 

https://doi.org/10.13039/501100006444
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hat it is satisfied. Thus by the Routh-Hurwitz criterion the non- 

rivial eigenvalues of the Jacobian have negative real parts if and 

nly if (A.5) holds. 

It is worth noting that disease-free state becomes unstable 

hen the condition (A.5) is not satisfied. In that case a 0 < 0 , which

rom the Eq. (A.3) implies that 

 (0) = −a 0 > 0 . (A.10) 

ince the sign of the highest term of the characteristic polynomial 

 (λ) is negative, it means that the cubic parabola is decreasing 

owards −∞ , when λ → ∞ . Thus, there must be a real root of

he polynomial with positive sign, because the curve intersects the 

orizontal axis for some λ > 0 . Thus, the root responsible for the 

nstability of the disease-free equilibrium is real and positive one. 

his observation is important in the analysis of the equilibria in 

iscrete-time models. 

ppendix B. Endemic equilibrium for random regular graph 

For determination of the population remaining unaffected by 

he epidemic in disease spreading on random regular graph, we 

ollow the same approach as in the compartmental model. To pro- 

eed in that spirit, first sum up the first four equations in the sys- 

em (27) and obtain 

p S (n + 1) + p E (n + 1) + p A (n + 1) + p I (n + 1) 

= p S (n ) + p E (n ) + (1 − μ) [ p A (n ) + p I (n ) ] . (B.1) 

e can sum the last relationship over all moments n, from the on- 

et to the finish of the epidemic, and assume negligibly small ini- 

ial probabilities of infected individuals. Then, due to cancellation 

f the respective terms it will be obtained 

p S (0) − p S (∞ ) = μ
∞ ∑ 

n =0 

[ p A (n ) + p I (n ) ] , (B.2) 

hich corresponds to the Eq. (3) of the compartmental model. 

Next, the fourth equation in (27) is rewritten as 

p I (n + 1) − p I (n ) = σ p A (n ) − μp I (n ) . (B.3)

ummation of the infinite ladder of Eq. (B.3) and using p I (0) ≈
 = p I (∞ ) leads to similar relationship between the probabilities 

f asymptomatic and infectious states as in the case of the com- 

artmental model (7) , 

∞ ∑ 

n =0 

p A (n ) = μ
∞ ∑ 

n =0 

p I (n ) . (B.4) 

The first equation in (27) can be written as 

p S (n + 1) 

p S (n ) 

]1 /k 

= 1 − βp I (n ) − αp A (n ) . (B.5) 

f we take logarithm of the last equation, and use approximation 

p A (n ) � 1 and βp I (n ) � 1 , that holds for weak spreading α � 1

nd β � 1 , it will be obtained 

1 

k 
[ ln p S (n + 1) − ln p S (n ) ] = −βp I (n ) − αp A (n ) . (B.6) 

umming the last relationship for all moments, after cancellations, 

esults in 

n p S (0) − ln p S (∞ ) = kα
∞ ∑ 

n =0 

p A (n ) + kβ
∞ ∑ 

n =0 

p I (n ) . (B.7)

Using the relationships (B.2), (B.4) and (B.7) one can obtain 

n estimate of the number of unaffected individuals in epidemic 

preading on random regular graphs from 

p S (0) − p S (∞ ) = 

μ(μ + σ ) 
ln 

p S (0) 
. (B.8) 
k (βσ + αμ) p S (∞ ) λ

11 
ppendix C. Stability of disease-free equilibrium for random 

egular graph 

The characteristic polynomial of the Jacobian of the disease-free 

tate in the discrete-time SEAIR model on random regular graph 

an be compactly written as 

S(λ) = λ3 + b 2 λ
2 + b 1 λ + b 0 . (C.1) 

ts coefficients are related to those of the compartmental model 

A.4) with 

 0 = a 0 − a 1 + a 2 − 1 , 

 1 = a 1 − 2 a 2 + 3 , 

 2 = a 2 − 3 , (C.2) 

here we remind that in the expressions (A.4) for the coefficients 

 0 ,a 1 and a 2 one should use kα and kβ instead of α and β, re- 

pectively. 

An equilibrium of a discrete-time dynamical system is linearly 

table, if the modulus of the dominant eigenvalue of the associated 

acobian matrix does not exceed one. It means that all roots of the 

haracteristic polynomial of the Jacobian are within the unit circle. 

or polynomials with real coefficients this is verified with the Jury 

est [45,46] , which is discrete-time analogue to the Routh-Hurwitz 

riterion. According to the Jury test, the roots of the polynomial lie 

ithin the unit circle, if an only if the following four conditions 

re met 

S(1) > 0 , 

S(−1) < 0 , 

| b 0 | < 1 , 

 1 − b 2 0 | > | b 0 b 2 − b 1 | . (C.3) 

n the application of the test, the conditions above are checked in 

he given order and if one is not satisfied, than at least one root is

utside the unit circle and the equilibrium is unstable. The verifica- 

ion of the first condition in the Jury test S(1) > 0 , by using the re-

ationships (A.4) and (C.2) leads to the demand that a 0 > 0 , which

lso appeared in the analysis of the compartmental case. This will 

esult in the following inequality 

(μ + σ ) > k (αμ + βσ ) , (C.4) 

hich if holds, also implies that the endemic equilibrium does not 

xist. The last inequality is similar to the respective one for the 

ompartmental case, with only difference being the presence of the 

ode degree k . It can be shown that the second and the third con-

ition of the Jury test are satisfied once the first one holds. The 

erification of the fourth condition is very complex, since it in- 

olves several dozens of products of the parameters up to degree 

ix. Thus, a numerical verification was applied by taking all com- 

inations of 100 different equally spaced values for the parameters 

, β, γ and σ in the range (0,1), while for μ in the range 1 − σ
or each σ, because 1 − μ − σ is the probability for an asymp- 

omatic person to remain so in the next time step. This procedure 

as shown that the fourth condition is satisfied if the first one is 

ulfilled as well. However, because theoretical verification is not 

omplete without the fourth condition in the Jury test is analyt- 

cally checked, the presentation of the proofs that the second and 

he third are satisfied is omitted for brevity. 

If one compares the characteristic polynomials for the com- 

artmental (13) and discrete-time model on random regular graph 

31) , by substituting 1 − λ in the latter with −λ and taking k = 1 

ill obtain the former. This implies that the roots of the compart- 

ental model λc are related with those of the discrete-time case 

d with 

= λc + 1 . (C.5) 
d 



L. Basnarkov Chaos, Solitons and Fractals 142 (2021) 110394 

T

t

o

A

a

r

≈

T

a

p

p

p

W

n

r

N

b

a

p

R

a

σ

O

t

F

o

o

l

S

l

D

r

l

l  

F

p  

F

l

T

t

t

a

A

t

e

S

d

O

s  

h

d

F

(

t

u

0 

− γ −
γ I

0 

l

n

c

T

p

t

(

1

n

p

he last equation implies that the disease-free state of the discrete- 

ime model becomes unstable due to existence of real eigenvalue 

f the Jacobian that is greater than one. 

ppendix D. Endemic equilibrium for complex network 

For small contagiousness parameters α � 1 and β � 1 , one can 

pproximate the probability that a susceptible individual will not 

eceive the virus as ∏ 

j∈N i 

[
1 − αp A, j (n ) − βp I, j (n ) 

]
(D.1) 

1 − α
∑ 

j∈N i 
p A, j (n ) − β

∑ 

j∈N i 
p I, j (n ) . 

hen the evolution of all probabilities can be compactly written 

s 

p S (n + 1) = p S (n ) [ I − αAp A (n ) − βAp I (n ) ] , 

 E (n + 1) = p S (n ) [ αAp A (n ) + βAp I (n ) ] 

+ (1 − γ ) Ip E (n ) , 

 A (n + 1) = γ Ip E (n ) + (1 − σ − μ) Ip A (n ) , 

p I (n + 1) = σ Ip A (n ) + (1 − μ) Ip I (n ) , 

 R (n + 1) = Ip R (n ) + μI [ p A (n ) + p I (n ) ] . (D.2) 

e will follow the same technique as for the previous two sce- 

arios. Summing up the first four equations in the last system will 

esult in 

p S (n + 1) + p E (n + 1) + p A (n + 1) + p I (n + 1) 

= p S (n ) + p E (n ) + (1 − μ) [ p A (n ) + p I (n ) ] . (D.3) 

ow, lets sum over all moments and use the fact that the proba- 

ilities of infected states at the beginning and ending of epidemic 

re vanishing. Then from the last relationship will be obtained 

 S (0) − p S (∞ ) = μ
∞ ∑ 

n =0 

[ p A (n ) + p I (n ) ] . (D.4) 

earrangement of the fourth equation in (D.2) and summing over 

ll moments will lead to result that generalizes (B.4) 

∞ ∑ 

n =0 

p A (n ) = μ
∞ ∑ 

n =0 

p I (n ) . (D.5) 

ne can write the evolution equation of probability of the suscep- 

ible state for each node i as 

p S,i (n + 1) 

p S,i (n ) 
= 

∏ 

j∈N i 

[
1 − αp A, j (n ) − βp A, j (n ) 

]
. (D.6) 

urther, take logarithm on both sides of the last equation and keep 

nly leading terms in α and β in the expansion of the logarithm 

f the multipliers to obtain 

n 

p S,i (n + 1) 

p S,i (n ) 
= −α

∑ 

j∈N i 
p A, j (n ) − β

∑ 

j∈N i 
p I, j (n ) . (D.7) 

umming (D.7) over all moments will result in 

n p S,i (0) − ln p S,i (∞ ) = α
∑ 

j∈N i 

∞ ∑ 

n =0 

p A, j (n ) + β
∑ 

j∈N i 

∞ ∑ 

n =0 

p I, j (n ) . 

T (λ) = det [ (1 − λ) I ] · det 

⎡ 

⎢ ⎢ ⎢ ⎣ 

(1 − λ) I 

0 (1 

0 

0 
12 
(D.8) 

enote with ln p S (n ) the vector which components are the loga- 

ithms of probabilities of susceptible states ln p S,i (n ) . Then, the re- 

ationship (D.8) for all nodes can be compactly written as 

n p S (0) − ln p S (∞ ) = αA 

∞ ∑ 

n =0 

p A (n ) + βA 

∞ ∑ 

n =0 

p I (n ) . (D.9)

rom one side, using (D.5) in (D.4) will result in 

 S (0) − p S (∞ ) = μ(1 + 

σ

μ
) 

∞ ∑ 

n =0 

p A (n ) . (D.10)

rom another side, applying (D.5) in (D.9) will lead to 

n p S (0) − ln p S (∞ ) = 

(
α + β

σ

μ

)
A 

∞ ∑ 

n =0 

p A (n ) . (D.11) 

he last two relationships are system of equations for determina- 

ion of the vector of the probabilities of the susceptible state at 

he end of the epidemic and the infinite sum of the vectors of the 

symptomatic states during the whole epidemic. 

ppendix E. Characteristic polynomial for the eigenvalues of 

he Jacobian of the discrete-time model 

To obtain more compact expression for determination of the 

igenvalues of the Jacobian (43) , we will extensively use the 

chur’s determinant identity 

et 

[
Q R 

S T 

]
= det (T ) · det (Q − RT 

−1 S ) . (E.1) 

ne should note that the identity does not need the matrices to be 

quare and if at least one of the matrices R or S is zero, then one

as simpler relationship 

et 

[
Q R 

S T 

]
= det (Q ) · det (T ) . (E.2) 

irst we can assign the role of the bottom-right submatrix T in 

E.1) to the bottom-right identity matrix in (43) . Then one can note 

hat to the respective submatrix R corresponds zero matrix and 

se (E.2) instead to obtain 

−αA −βA 

λ) I αA βA 

 (1 − σ − μ − λ) I 0 

σ I (1 − μ − λ) I 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(E.3) 

By repeating the same procedure one more time with taking top- 

eft submatrix (1 − λ) I as the submatrix Q in the Schur’s determi- 

ant identity, and observing that now the submatrix S is zero, one 

an obtain that 

T (λ) = { det [ (1 − λ) I ] } 2 

· det 

⎡ 

⎢ ⎣ 

(1 − γ − λ) I αA βA 

γ I (1 − σ − μ − λ) I 0 

0 σ I (1 − μ − λ) I 

⎤ 

⎥ ⎦ 

. (E.4) 

o simplify notation one could first stop repetitive writing of the 

art which contains the trivial eigenvalue λ = 1 which has mul- 

iplicity 2 N, and focus on the remaining. Take the submatrix T = 

1 − μ − λ) I which determinant contains trivial eigenvalues λ = 

 − μ and respectively the remaining submatrices Q , R and S . We 

ote that 1 − μ are not eigenvalues of the Jacobian, since in ex- 

anding the determinants as polynomial, the terms corresponding 
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o 1 − μ − λ that appear in T will cancel with the same terms 

hich will appear in the denominator in the remaining determi- 

ant as will be seen below. From the last determinant let us first 

onsider the submatrix that corresponds to the product RT −1 S in 

he Schur’s identity (E.1) . By using the properties of the inverse 

atrix one can obtain first 

(1 − μ − λ) I 
]−1 ·

[
0 σ I 

]
= 

[
0 

σ
1 −μ−λ

I 
]
. (E.5) 

hen it follows that 

βA 

0 

]
·
[
0 

σ
1 −μ−λ

I 
]

= 

[
0 

βσ
1 −μ−λ

A 

0 0 

]
. (E.6) 

ow, the part of the characteristic polynomial which contains the 

ontrivial eigenvalues is 

(λ) = det 

{ [
(1 − γ − λ) I αA 

γ I (1 − σ − μ − λ) I 

]
−

[ 

0 βσ
1 −μ−λ

A 

0 0 

] } 

= det 

[ 

(1 − γ − λ) I 
(
α − βσ

1 −μ−λ

)
A 

γ I (1 − σ − μ − λ) I 

] 

. (E.7) 

We can apply the Schur’s identity again. First observe the ma- 

rix product that corresponds to the RT −1 S term in (E.1) (
α − βσ

1 − μ − λ

)
A · [ (1 − μ − σ − λ) I ] 

−1 · γ I 

= 

γ

1 − σ − μ − λ

(
α − βσ

1 − μ − λ

)
A . (E.8) 

fter simplification of the scalar at the right-hand side of the 

ast relationship and subtract the respective matrices in the form 

 − RT −1 S from (E.1) one will obtain the following characteristic 

olynomial of the eigenvalues 

(λ) = det [ (1 − σ − μ − λ) I ] ·

det 

[
(1 − γ − λ) I − γ [ α(1 − μ − λ) − βσ ] 

(1 − σ − μ − λ)(1 − μ − λ) 
A 

]
. (E.9) 

gain, the first determinant has trivial eigenvalues λ = 1 − σ − μ
ith multiplicity N as well and the nontrivial ones are contained 

n the second determinant. By observing the second determinant 

n (E.9) one can note that in the denominator multiplying the ad- 

acency matrix appear terms 1 − μ − λ and 1 − σ − μ − λ. Expan- 

ion of the determinants as polynomials will result in cancellation 

f those terms in the denominators with the respective ones in the 

eterminants det [ (1 − μ − λ) I ] and de t [ (1 − σ − μ − λ) I ] . Finally, 

he characteristic polynomial resulting from the last nontrivial de- 

erminant will not change if one multiplies it with a constant. So, 

 more convenient form of the last determinant, and the respective 

haracteristic polynomial is 

(λ) = det 

[
(1 − γ − λ)(1 − σ − μ − λ)(1 − μ − λ) 

γ [ α(1 − μ − λ) − βσ ] 
I − A 

]
. 

(E.10) 

ppendix F. Stability of the endemic equilibrium in disease 

preading on complex networks 

Since the Jacobian of the endemic and of the disease-free equi- 

ibrium differ only in the presence of the matrix �, the charac- 

eristic equation will have the same form for both cases. However, 

t was previously obtained that the leading eigenvalue of the Ja- 

obian of the disease-free equilibrium λmax depends on the lead- 

ng one of the adjacency matrix �max . Accordingly, for the en- 

emic state the dependence will be on the leading eigenvalue L max 

f the matrix product �A . We will verify that this eigenvalue is 
13 
elated with that of the adjacency matrix as L max < p S, max �max , 

here p S, max = max p S,i (∞ ) , is the maximum of the probabilities 

f susceptible states at the end of the epidemic. To prove that, de- 

ote with x the unit eigenvector of �A , corresponding to L max , or 

Ax = L max x . Let �i and u i are the eigenvalues and the respec- 

ive orthogonal basis vectors corresponding to the adjacency ma- 

rix. The vector x in the basis u i is given as 

 = 

N ∑ 

i =1 

a i u i , (F.1) 

here 
∑ 

a 2 
i 

= 1 because x is unit vector. Then, multiplying the ma- 

rix A with x will result in some vector 

 = Ax = 

N ∑ 

i =1 

a i �i u i , (F.2) 

ue to the orthonormality of the basis u 

T 
i 
u j = δi, j , the squared 

agnitude of y reads 

 

T y = 

N ∑ 

i =1 

a 2 i �
2 
i , (F.3) 

hich can be bounded as 

 

T y ≤ �2 
max 

N ∑ 

i =1 

a 2 i = �2 
max . (F.4) 

his means that the vector y has length not bigger than �max . In 

onnected network each node will be infected with nonzero prob- 

bility, and thus p S,i (∞ ) < 1 . Then the matrix � is symmetric pos-

tive semi-definite, and all its eigenvalues are strictly less than one. 

et us now express the vector y in the orthonormal basis v i of the

atrix �

 = 

N ∑ 

i =1 

b i v i . (F.5) 

hen the vector �y can be expressed as 

y = 

N ∑ 

i =1 

b i p S,i (∞ ) v i , (F.6) 

ince � is diagonal matrix with eigenvalues p S,i (∞ ) . The squared 

agnitude of �y is bounded as 

y T �T �y = 

∑ N 
i =1 b 

2 
i 

p S,i (∞ ) 2 

< p 2 S, max 

∑ N 
i =1 b 

2 
i 

= p 2 S, max | y | 2 . (F.7) 

ow, combining (F.2), (F.4) and (F.7) will result in 

 

2 
max x 

T x = x 

T A 

T �T �Ax < p 2 S, max �
2 
max . (F.8) 

hus, we have just bounded the leading eigenvalue of the matrix 

A as 

 max < p S, max �max . (F.9) 

Recall that in the stability analysis of the endemic equilibrium 

ne has the matrix product �A instead of A which is used for the 

isease-free state. So, the stability of the endemic equilibrium de- 

ends on L max as the other case depends on �max . Correspond- 

ngly, the endemic equilibrium will be linearly stable, once the fol- 

owing inequality holds [refer to the respective condition (49) ] 

(μ + σ ) > L max (αμ + βσ ) . (F.10) 

ow, consider the system of transcendental Eq. (34) and use the 

act that p A is principal eigenvector of the adjacency matrix A , or 

p = �max p . By algebraic manipulations, from the system (34) it 
A A 
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an be shown that for each component of the susceptible proba- 

ility vector holds relationship similar to (8) 

p S,i (0) − p S,i (∞ ) = 

μ(μ + σ ) 

�max (βσ + αμ) 
[ ln p S,i (0) − ln p S,i (∞ ) ] , 

(F.11) 

rom which one has 

μ(μ + σ ) 

βσ + αμ
= �max 

p S,i (0) − p S,i (∞ ) 

ln p S,i (0) − ln p S,i (∞ ) 
. (F.12) 

ombining the endemic equilibrium stability condition (F.10) with 

he last relationship (F.12) will result in 

max 
p S,i (0) − p S,i (∞ ) 

ln p S,i (0) − ln p S,i (∞ ) 
> L max . (F.13) 

earranging the terms in the last inequality will result in more 

onvenient form 

max p S,i (∞ ) 

p S,i (0) 

p S,i (∞ ) 
− 1 

ln 

p S,i (0) 

p S,i (∞ ) 

> L max . (F.14) 

he last inequality is satisfied since one can use (F.9) and the frac- 

ion at the left-hand side is always greater than one. Thus, when 

n epidemic occurs such that small fraction of the population is 

ffected, the respective endemic equilibrium is linearly stable. 

ppendix G. Eigenvalues and eigenvectors of the Jacobian at 

he disease-free state for epidemic spreading on complex 

etworks 

Denote the eigenvectors of the Jacobian matrix in the 

isease-free equilibrium with w = [ w 

T 
S 
, w 

T 
E 
, w 

T 
A 
, w 

T 
I 
, w 

T 
R 

] T where

 S , w E , w A , w I and w R are the column vectors which correspond

o probabilities of the states S, E, A, I and R respectively. Then, 

he eigenvalue equation for the Jacobian Jw = λw in more detailed 

orm is 

 

 

 

 

 

 

 

I 0 −αA −βA 0 

0 (1 − γ ) I αA βA 0 

0 γ I (1 − σ − μ) I 0 0 

0 0 σ I (1 − μ) I 0 

0 0 μI μI I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

·

⎡ 

⎢ ⎢ ⎣ 

w S 

w E 

w A 

w I 

w R 

⎤ 

⎥ ⎥ ⎦ 

= λ

⎡ 

⎢ ⎢ ⎣ 

w S 

w E 

w A 

w I 

w R 

⎤ 

⎥ ⎥ ⎦ 

. 

(G.1) 

rom the fourth row in (G.1) , which corresponds to the infectious 

tate, one can obtain that 

w A + (1 − μ) w I = λw I , (G.2) 

hich can be rearranged into 

w A = (μ + λ − 1) w I . (G.3) 

he last equation relates the magnitudes of the vectors w A and w I 

nd shows that they are collinear. In similar manner, from the last 

ow in (G.1) , one can show that the vector w R is collinear with the 

revious ones and moreover 

μ(μ + λ + σ + 1) 

μ + λ + 1 

w A = (λ − 1) w R . (G.4) 

ikewise, from the third row in (G.1) it follows that the exposed 

robability vector w E is also collinear to the previous ones, or 

ore precisely 

w E = (μ + λ + σ − 1) w A . (G.5) 

ow consider the second row in (G.1) , from which one has 

Aw A + βAw I = (λ + γ − 1) w E , (G.6) 
14 
hich after using (G.3) and (G.4) will result in 

α + 

βσ

μ + λ − 1 

)
Aw A = (λ + γ − 1) 

(μ + λ + σ − 1) 

γ
w A . (G.7) 

he last relationship could be rearranged further as 

w A = 

(λ + γ − 1)(μ + λ + σ − 1)(μ + λ − 1) 

γ [ α(μ + λ − 1) + βσ ] 
w A . (G.8) 

e have obtained eigenvalue equation for the adjacency matrix. 

hus, every vector w A must be eigenvector of the adjacency matrix 

 . Since the eigenvalues of the adjacency matrix � are indepen- 

ent on any dynamical process evolving on the network, it means 

hat the eigenvalues of the Jacobian λ must satisfy the relationship 

= 

(λ + γ − 1)(μ + λ + σ − 1)(μ + λ − 1) 

γ [ α(μ + λ − 1) + βσ ] 
. (G.9) 

he last result relates the eigenvalues of the Jacobian with those of 

he adjacency matrix. By expanding the terms, one can see that it 

s cubic polynomial in λ, and thus for each eigenvalue � one has 

hree possibly different eigenvalues λ. Thus, N eigenvalues of the 

djacency matrix would generate 3 N eigenvalues of the Jacobian. 

e remind that as is given in the Appendix E , there is one trivial

igenvalue λ = 1 with algebraic multiplicity 2 N. The eigenvectors 

orresponding to this eigenvalue are those that span the subspace 

onsisting of susceptible or recovered states only and zeros at the 

emaining states. It can be easily verified from (G.1) , that each vec- 

or of the form 

 S,R = [ w 

∗T 
S , 0 

T , 0 

T , 0 

T , w 

∗T 
R ] 

T (G.10)

s eigenvector of the Jacobian. 

Finally, from the first row in (G.1) it follows that 

α + 

βσ

μ + λ − 1 

)
Aw A = (1 − λ) w S , (G.11) 

n which one can use (G.8) to obtain 

 S = 

(μ + λ + σ − 1)(λ + γ − 1) 

γ (1 − λ) 
w A . (G.12) 

hus, the vector w S is collinear with the rest as well. This im- 

lies that besides the vectors (G.10) , the remaining eigenvectors of 

he Jacobian w consist of scaled copies of the eigenvectors of the 

djacency matrix. More precisely, by using the relationships (G.3), 

G.4), (G.5) and (G.12) , the eigenvector w is 

 = 

⎡ 

⎢ ⎢ ⎣ 

w S 

w E 

w A 

w I 

w R 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

(μ+ λ+ σ−1)(λ+ γ −1) 
γ (1 −λ) 

w A 

μ+ λ+ σ−1 
γ w A 

w A 
σ

μ+ λ−1 
w A 

μ(μ+ λ+ σ−1) 
(μ+ λ−1)(λ−1) 

w A 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(G.13) 

ince w A is eigenvector of the adjacency matrix, there are 3 N

igenvectors of the form given in (G.13) . Together with 2 N vec- 

ors of the form (G.10) , they constitute a set of 5 N eigenvectors. 

hen they are orthogonal, with normalization one can obtain an 

rthonormal basis. 
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